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Study on the applicability of the Friedel relation

with dislocation velocity-stress exponent
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Kanazawa 920-8667, Japan

It was investigated at 77–178 K whether the Friedel relation is appropriate for the
interaction between a dislocation and the impurity in KCl:Mg2+ (0.035 mol% in the melt)
single crystal. This was carried out by fitting of mε=0 to the temperature versus dislocation
velocity-effective stress exponent, m∗, curves with respect to the two models: one is the
Fleischer’s model taking account of the Friedel relation and the other the Fleischer’s model.
The former model is termed the F-F. mε=0 is the m value at zero strain. m is a dislocation
velocity-applied stress exponent. The m∗ for the F-F was examined from

m∗ = 2F0b{(Tc/T )1/2 − 1}/(3kTc)

where F0 is the force acted on the dislocation at 0 K, b is the magnitude of the Burgers
vector, k is the Boltzmann’s constant and Tc is the critical temperature T , at which the
effective stress due to the impurities is zero. As a result, it was found that the mε=0 values
tend to increase with decreasing temperature and further approach to the m∗ for the
Fleischer’s model in contrast to the F-F. That is, the interaction between a dislocation and
the impurity in the specimen could be approximated to the Fleischer’s model rather than to
the F-F. Similar result was also deduced on the basis of the data analyzed in terms of
strain-rate sensitivity versus stress decrement due to oscillation. Consequently, it was
considered that the Friedel relation is inappropriate for the specimen within the
temperature range. C© 2003 Kluwer Academic Publishers

1. Introduction

When alkali halide crystals are doped with divalent
impurities, the impurities are bound to positive ion
vacancies in the form of a dipole. The divalent
impurity-vacancy dipole is abbreviated to I-V dipole.
Then asymmetrical distortions are produced around
the I-V dipoles and interact strongly with mobile dis-
locations [1]. The solution hardening is named “rapid
hardening,” which can be distinguished from “gradual
hardening” due to the defects of cubic symmetry (e.g.,
substitutional atoms in cubic crystals, monovalent
substitutional impurities in NaCl, interstitials in face-
centered cubic metals, and F-centers (additive coloring)
in KCl) [2, 3]. In view of the different types of atomic
defects, solution hardening may be divided into the two
classes.

It is well known that the Friedel relation [4]
between the effective stress and the average length of
dislocation segments is exact for most weak obstacles
to dislocation motion at low concentration of the ob-
stacles. By using a digital computer, this was clarified
by Foreman and Makin [5]. It is investigated in this
paper whether the Friedel relation is exact for readily
available KCl:Mg2+ crystals concerned with the
above-mentioned rapid hardening. A large number of
investigations on strength of materials have been made

with alkali halide crystals so far [6–11]. Alkali halide
contained additive (i.e., KCl:Mg2+), therefore, is an
excellent material for an investigation of mechanical
properties.

This study is carried out by the use of dislocation
velocity-effective stress exponent expressed by [12]

υ = Aτm∗
(1)

where υ is the average velocity of dislocation, A and
m∗ are constants for a given material and temperature,
and τ is the effective shear stress due to the impuri-
ties. Equation 1 is regarded as an empirical relationship
[13, 14]; nevertheless, m∗ is useful for investigating the
behavior of thermally activated dislocation motion in
various materials (e.g., NaCl contained Mg2+, Ca2+,
Sr2+, and Ba2+ [15], body-centered cubic metals [16],
Nb [17], LiF:Mg2+ [18], and binary iron-base alloys
contained Co, Cr, Al, Si, Ni and Mn, respectively [19]).
From m∗, rate-controlling mechanism has been exam-
ined [20–22].

2. Experimental procedure
KCl:Mg2+ (0.035 mol% in the melt) single crystals
were deformed by compression along 〈100〉 axis and the
ultrasonic oscillatory stress was applied by a resonator
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in the same direction as the compression. Furthermore,
strain-rate cycling was carried out keeping the stress
amplitude constant. The stress change due to the strain-
rate cycling is �τ ′. The tests were conducted at the
temperature range of 77 to 178 K. Details of the strain-
rate cycling test associated with the oscillation have
been reported in the previous papers [23, 24].

The specimens, which were prepared by cleaving out
of a block, are the size of about 5 × 5 × 15 mm3. They
were kept at 973 K for 24 h and were cooled to room
temperature at a rate of 40 Kh−1 in order to reduce dis-
location density. Furthermore, they were held at 673 K
for 30 min and were followed by water quenching in
order to disperse the impurities immediately before the
tests.

3. Results and discussion
3.1. Consideration with mε=0
If the dislocation velocity is controlled by the ther-
mally activated overcoming of the short-range stress
field around the I-V dipoles and the dislocation moves
forward a distance, L , the dislocation velocity is given
by [25]

υ = νL exp(−�G/kT ) (2)

where ν is the frequency of vibration of a dislocation
segment of length, L , �G is the change in Gibbs free
energy of activation for the dislocation motion, and kT
has the usual meaning. The �G in Equation 2 is ex-
pressed for the Fleischer’s model [1] taking account of
the Friedel relation [4] as follows [26]

�G = F0b{1 − (τ/τ0)1/3}2 (3)

where F0 is the force acted on the dislocation at the
temperature of 0 K, b is the magnitude of the Burgers
vector, and τ0 is the effective shear stress due to the
impurities at 0 K. This model is termed the F-F in this
paper. Substituting Equation 3 in Equation 2 gives

υ = νL exp[−F0b{1 − (τ/τ0)1/3}2/(kT )] (4)

Natural logarithmic differentiation of Equation 1 with
respect to the shear stress gives

m∗ = � ln υ/� ln τ = τ (� ln υ/�τ ) (5)

The (� ln υ/�τ ) in Equation 5 can be obtained from
Equation 4 as follows

� ln υ/�τ = 2F0b/(3kT τ0){(τ/τ0)−2/3 − (τ/τ0)−1/3}
(6)

Substituting Equation 6 in Equation 5, the m∗ for the
F-F is expressed by

m∗ = 2F0b{(τ/τ0)1/3 − (τ/τ0)2/3}/(3kT ) (7)

Furthermore, substituting the following relation [26]
between effective shear stress and temperature into

Equation 7, we can evaluate the m∗ for the F-F.

(τ/τ0)1/3 = 1 − (T/Tc)1/2 (8)

Namely,

m∗ = 2F0b{(Tc/T )1/2 − 1}/(3kTc) (9)

where Tc is the critical temperature at which τp1 is zero.
Tc is independent of an impurity concentration [23, 24].
τp1 is considered to represent the effective shear stress
due to only one type of impurities when a dislocation
moves forward with the help of oscillation [23, 24]. The
τp1 is obtained on the basis of the strain-rate sensitiv-
ity, λ, versus stress decrement curves due to oscillation
[23, 24]. The F0 in Equation 9 is determined by [26]

F0 = (
2L2

0 E
)1/3

(bτp0)2/3 (10)

where L0 is the average spacing of impurities on the
slip plane, E is the line tension of the dislocations, and
τp0 is the value of τp1 at 0 K. The line tension of the
dislocations is calculated by µb2. The shear modulus,
µ, for [110] direction is assumed to be 1.01 × 1010 Pa
at 0 K [27]. The average spacing of impurities on the
slip plane has been given by [1, 28]

L0 = b/(4c/3)1/2 (11)

where c is the concentration of impurities and is deter-
mined to be 7.9 p.p.m. by dielectric loss measurement.

On the other hand, the �G in Equation 2 is expressed
for the Fleischer’s model as follows [1]

�G = F0b{1 − (τ/τ0)1/2}2 (12)

Combination of Equations 2 and 12 yields

υ = νL exp[−F0b{1 − (τ/τ0)1/2}2/(kT )] (13)

Natural logarithmic differentiation of Equation 13 with
respect to ln τ gives [1]

m∗ = F0b{(τ/τ0)1/2 − (τ/τ0)}/(kT ) (14)

and the relative formula of effective shear stress and
temperature for the Fleischer’s model is given by [1]

(τ/τ0)1/2 = 1 − (T/Tc)1/2 (15)

The Fleischer’s model has been widely used for the
interaction between a dislocation and an impurity in
ionic crystals doped with divalent cations [1, 2, 29, 30].
Substituting Equation 15 into Equation 14, we find

m∗ = F0b{(Tc/T )1/2 − 1}/(kTc) (16)

where F0 is determined by

F0 = τp0Lb (17)
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Figure 1 Relationship between the temperature and the dislocation
velocity-effective stress exponent for KCl:Mg2+ (0.035 mol% in the
melt) at the two models: (- - - -) the F-F and (——) the Fleischer’s model.
Open circles represent the mε=0 for the specimen.

The m∗ of Equation 16 corresponds to that for the
Fleischer’s model. Temperature versus m∗ curves cal-
culated from Equations 9 and 16 are represented by a
dashed and a solid lines in Fig. 1. Then, the values of
Tc and τp0 for the F-F are obtained from Fig. 2a and
those for the Fleischer’s model from Fig. 2b, which are
re-tabulated in Table I. The two curves show that m∗
increase with decreasing temperature. The m∗ value for
the F-F is greater than that for the Fleischer’s model at
a given temperature. The difference between m∗ values
for the two models also increases with decreasing tem-
perature, which ranges 3.9 to 28.6 at the temperature of
190 to 90 K.

Figure 2 Linear plots of the effective shear stress and the temperature
for KCl:Mg2+ (0.035 mol% in the melt) at the two models: (a) the F-F
and (b) the Fleischer’s model.

TABLE I Values of Tc and τp0 for KCl:Mg2+ (0.035 mol% in the
melt) at the two models

Model Tc (K) τp0 (MPa)

F-F 199 [31] 17.91 [31]
Fleischer 191 [32] 5.64 [33]

According to the theory by Nix et al. [34], the
value of m∗ is identical with m when τi is consider-
ably small in comparison with τa. m is a dislocation
velocity-applied stress exponent. τi and τa are inter-
nal stresses and applied stress respectively. The work
hardening in both stage I and stage II of plastic defor-
mation region was largely due to internal stress com-
ponents in LiF [35] and NaCl [15, 35, 36] single crys-
tals. Then, the effective stress due to a small amount of
impurity was almost constant independently of strain
during the plastic deformation. Therefore, the value
of m∗ seems to almost agree with mε=0 (m value at
zero strain) for a given material and temperature. Fur-
thermore, the influence of internal stresses on dislo-
cation velocity in zinc could be neglected at the ap-
plied shear stress below about 0.01 MPa [37]. This also
implies that the value of m∗ (=� ln υ/� ln τ ) corre-
sponds to m (=� ln υ/� ln(τ + τi)) at extremely small
strain and a given temperature. Johnston and Stein [38]
have proposed that m∗ can be determined by extrap-
olating m to zero strain for LiF single crystal. Evans
and Pratt [36] showed that m∗ compares well with
m at zero strain in CaF2 single crystals. In addition,
the values of m∗ and mε=0 for NaCl single crystals
at 244 K were 13 ± 2 and 16 ± 2 respectively [36].
The mε=0 was independent of the strain-rate incre-
ments: ε̇1/ε̇2 = 2, 4, 10, 40, 100, 400, and 1000 [36].
mε=0 for alkali halide was considered to be m∗, since
the thermal components of flow stress are independent
of mobile dislocation density at low concentration of
impurities and near zero strain, where the thermally
activated overcoming of impurities by a dislocation
is dominant [39]. Deformation behavior has been in-
vestigated with mε=0 so far [14, 36, 40–42]. Using
mε=0, reasonable value of effective stress and hardening
mechanism were found for zone-refined iron [40] and
potassium contained Na+ (25 p.p.m.) [41] during the
deformation.

Fig. 3 shows m versus shear strain curve for
KCl:Mg2+ (0.035 mol%). The m values are obtained
here by strain-rate cycling tests without applying the
oscillation. Through the m value extrapolated to zero
strain in Fig. 3, therefore m∗ seems to be about 29
at 135 K on the assumption that internal stresses and
mobile dislocation density are unchanged during the
change in strain rate of the specimen, because m∗ is
defined as [38]

(� ln ε̇/� ln τ )T = m∗ + (� ln ρ/� ln τ )T (18)

where ρ is the density of mobile dislocations.
The (� ln ε̇/� ln τ )T in this study is given by
(1.609/� ln τ ). Open circles in Fig. 1 correspond to the
dependence of temperature and the mε=0 for KCl:Mg2+
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Figure 3 Variation of m with shear strain for KCl:Mg2+ (0.035 mol%
in the melt) at 135 K.

(0.035 mol%). The open circles tend to increase with
decreasing temperature and approach to solid line. This
suggests that the interaction between a dislocation and
the impurity in the specimen can be approximated to
the Fleischer’s model rather than to the F-F. That is, the
F-F is considered to be unsuitable for the specimen.
Consequently, it may be deduced that the Friedel re-
lation is not appropriate for the interaction between a
dislocation and the impurity in the specimen within the
temperature range.

3.2. Consideration with τp1(�ln ε̇/�τ ′)p
The m∗ for the F-F may be also given by Equation 7
transformed into

m∗ = 2�G0{(τp1/τp0)1/3 − (τp1/τp0)2/3}/(3kT )

(19)

where �G0 is the Gibbs free energy for the breakaway
of the dislocation from the impurity in the absence of
an applied stress and is obtained from the following
equation [26]:

∂ ln ε̇/∂τ = {2�G0/(3kT τp0)}{1 − (T/Tc)1/2}−2

× (T/Tc)1/2 + ∂ ln ε̇0/∂τ (20)

The calculations of Equation 20 are shown by open
circles in Fig. 4. As for the Fleischer’s model, the m∗
may be given by the following equation in accordance
with Equation 14. Namely,

m∗ = �G0{(τp1/τp0)1/2 − (τp1/τp0)}/(kT ) (21)

and �G0 in Equation 21 is obtained from [33]

∂ ln ε̇/∂τ = {�G0/(kT τp0)}{1 − (T/Tc)1/2}−1

× (T/Tc)1/2 + ∂ ln ε̇o/∂τ (22)

Open circles in Fig. 5 show the results of Equation 22.
The ∂ ln ε̇/∂τ in Equations 20 and 22 is represented
by (� ln ε̇/�τ ′)p. The (� ln ε̇/�τ ′)p, which is given

Figure 4 Linear plots of Equation 20 for KCl:Mg2+ (0.035 mol% in the
melt). (◦): (� ln ε̇/�τ ′)p; (•): ∂ ln ε̇0/∂τ .

Figure 5 Linear plots of Equation 22 for KCl:Mg2+ (0.035 mol% in the
melt) [33]. (◦): (� ln ε̇/�τ ′)p. (•): ∂ ln ε̇0/∂τ .

Figure 6 Relationship between the strain-rate sensitivity and the stress
decrement for KCl:Mg2+ (0.035 mol% in the melt) at 131 K and ε =
10%.

by the difference between λ at first plateau place and
at second one on the relative curve of λ and stress
decrement, was assumed to be the λ due to the im-
purities [32, 43–45]. Fig. 6 shows the typical varia-
tion of λ with �τ for the specimen. The �τ , which is
an axis of abscissa in Fig. 6, is the stress drop due to
superposition of the ultrasonic oscillatory stress. Ac-
cordingly, ∂ ln ε̇0/∂τ in Equations 20 and 22 could be
evaluated from � ln ε̇0/�τ ′ [33], which is represented
by the solid circles in Figs 4 and 5. On the basis of
the slope of dashed lines in Figs 4 and 5, the �G0 for
the specimen at the F-F was estimated to be within the
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Figure 7 Relationship between the temperature and the dislocation
velocity-effective stress exponent for KCl:Mg2+ (0.035 mol% in the
melt) at the two models: (�) the F-F and (�) the Fleischer’s model.
Open circles represent τp1(� ln ε̇/�τ ′)p for the specimen. (- - - -) and
(——) are calculated by Equations 9 and 16, respectively.

range of 0.40 to 0.46 eV and that at the Fleischer’s
model 0.42 to 0.48 eV [33]. The m∗ values calculated
from Equations 19 and 21 are denoted by open squares
and triangles in Fig. 7. Dashed and solid curves corre-
spond to the results of Equations 9 and 16, being already
shown in Fig. 1. These open symbols tend to increase
slightly with decreasing temperature. Furthermore, m∗
may be analyzed in terms of λ versus stress decrement
curve due to oscillation as follows

m∗ = τp1(� ln ε̇/�τ ′)p (23)

This m∗ is indicated by open circles in Fig. 7. The values
of m∗ in Equations 19, 21, and 23 are examined on
the assumption that Equation 5 is also valid for the
case of applying the ultrasonic oscillatory stress during
plastic deformation. As can be seen from Fig. 7, the
open circles are closer to m∗ for the Fleischer’s model
in contrast to that for the F-F, though the difference
of the two (i.e., open circles and triangles) is great at
a given temperature. This means that the interaction
between a dislocation and the impurity in the specimen
can be fitted to the Fleischer’s model rather than to
the F-F. Resulting in the same description as preceding
section, it is considered that the Friedel relation is not
appropriate for the specimen within the temperature
range.

4. Conclusion
1. Temperature versus m∗ for the F-F can be ex-

amined from Equation 9 and that for the Fleischer’s
model from Equation 16. Fig. 1 shows the results for
KCl:Mg2+ (0.035 mol% in the melt). The m∗ values
for the two models increase with decreasing tempera-
ture. Assuming that internal stresses and mobile dislo-
cation density in the specimen are unchanged during
the change in strain rate, it is considered that m∗ can be
expressed by mε=0. Observing open circles in Fig. 1,
the mε=0 tends to increase with decreasing temperature
and further approaches to the m∗ for the Fleischer’s
model rather than that for the F-F at the temperature.

2. The m∗ values for the F-F and for the Fleischer’s
model are calculated also from Equations 19 and 21 re-
spectively. Then the m∗ values proposed by Equation 23
are closer to the m∗ for the Fleischer’s model, com-
pared with that for the F-F, as shown in Fig. 7. The
m∗ of Equation 23 is obtained in terms of λ versus
stress decrement curve due to oscillation. The discus-
sion in this study is progressed on the assumption that
Equation 5 can be also applied to the case of ap-
plying the ultrasonic oscillatory stress during plastic
deformation.

Figs 1 and 7 imply that the Fleischer’s model is suit-
able to the interaction between a dislocation and the
impurity in the specimen, whereas the F-F is unsuit-
able to it. This leads to the estimation that the Friedel
relation is inappropriate to that in the specimen within
the temperature range.
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